Table of Contents

- Planetary protection category IVa description
- Case study for planetary protection category IVa - InSight
- Requirements for case study mission
- Implementation of requirements for case study mission
- Things to remember
Table of Contents

➤ Planetary protection category IVa description
➤ Case study for planetary protection category IVa - InSight
➤ Requirements for case study mission
➤ Implementation of requirements for case study mission
➤ Things to remember

Category IVa Case Study (Mars) Illustrating Category IV missions generally:
- Main Feature is Bioburden Control
- Similar approaches valid for missions to Europa, Enceladus, depending on Mission Design
Category IV description (1)

Lander missions to a target body of chemical evolution and/or origin of life interest and for which scientific opinion provides a significant chance of contamination which could compromise future investigations.

Applicability: Mars, Europa, Enceladus

For Europa, Enceladus: Limit the probability of inadvertent contamination of a body of liquid water to less than 1×10^{-4} per mission.

For Mars Missions: Further subdivided into 3 subcategories (a,b,c):

Category IVa: Lander systems not carrying instruments for the investigations of extant martian life are restricted to a surface bioburden level of $\leq 3 \times 10^5$ spores, and an average of ≤ 300 spores per square metre.

[continued...]
Category IV description (2)

Category IVb: For lander systems designed to investigate extant martian life, all of the requirements of Category IVa, plus:

- The entire landed system is restricted to a surface bioburden level of ≤ 30 spores, or to levels of bioburden reduction driven by the nature and sensitivity of the particular life-detection experiments,

OR

- The subsystems which are involved in the acquisition, delivery, and analysis of samples used for life detection must be sterilized to these levels, and a method of preventing recontamination of the sterilized subsystems and the contamination of the material to be analyzed is in place.
Category IV description (3)

Category IVc: For missions which investigate martian special regions, even if they do not include life detection experiments, all of the requirements of Category IVa apply, together with the following requirement:

- Case 1. If the landing site is within the special region, the entire landed system is restricted to a surface bioburden level of ≤30 spores.
- Case 2. If the special region is accessed through horizontal or vertical mobility, either the entire landed system is restricted to a surface bioburden level of ≤ 30* spores, OR the subsystems which directly contact the special region shall be sterilized to these levels, and a method of preventing their recontamination prior to accessing the special region shall be provided.

*assumes 300 spores/m² cleanliness followed by process to reduce by 4 logs on most resistant organism.

For both Case 1 and Case 2: If an off-nominal condition (such as a hard landing) would cause a high probability of inadvertent biological contamination of a special region by the spacecraft, the entire landed system must be sterilized to a surface bioburden level of ≤30 spores and a total (surface, mated, and encapsulated) bioburden level of ≤30+(2×10⁵) spores.
Case study – InSight
(Interior Exploration using Seismic Investigations, Geodesy and Heat Transport)

→ Target body: Mars
→ Mars Lander (360kg) based on Phoenix heritage
→ Science instruments contributed by CNES (SEIS) and DLR (HP3)
→ Launch Window May 5, 2018, on ATLAS V 401 from Vandenberg
→ 6.5-month cruise, type 1 trajectory, direct entry, landing on Nov. 26, 2018.

Followed by one Martian year of science on the surface, to:

● Understand the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars, AND

● Determine the present level of tectonic activity and meteorite impact rate on Mars.
Requirements for case study mission 1

- As a Mars lander mission without life detection instruments, the InSight mission has been designated PP Category IVa by the NASA PPO.

- In accordance with the requirements stated in NASA Procedural Requirements document NPR8020.12 for this category and type of mission, the InSight Project is required to comply with:

 Bioburden requirements:
 - \(\leq 5 \times 10^5 \) total spores at launch, \(\leq 3 \times 10^5 \) total spores on planned landing hardware and mean exposed surface density of \(<300\) spores/m\(^2\).

 Cleanliness requirements:
 - Assembly and testing in ISO 8 (or better) cleanroom environments.

 Recontamination avoidance requirements:
 - Launch recontamination not to exceed bioburden requirements.

 Organic inventory requirements
 - Archiving of samples of at least 50 grams of each organic material type for which more than 25 kg is transported to Mars.
 - Documentation of organic materials for which are present on the spacecraft in quantities of \(\geq 1\) kg.

 Probability of Impact requirements:
 - Launch vehicle Mars avoidance of less than \(1 \times 10^{-4} \) for 50 years after launch, and probability of a non-nominal impact of Mars by the spacecraft due to cruise phase failure shall be \(\leq 1 \times 10^{-2} \).
Additional Project requirements included:
- Average internal (behind HEPA or tortuous path) bioburden $\leq 1,000$ spores/m2
- Mole shall be unpowered and cease operations immediately if tether breaks
- Ice shall not be present within reach of HP3 instrument’s mole (demonstrated thermodynamically)*
- Mole shall not generate a thin liquid film as a result of operations (insufficient to transport a 50nm particle)*
- Planetary Protection Landing Site Review is required

Project utilized NASA PPO-provided “new” heat microbial reduction specifications which provide expanded implementation options (e.g., no humidity constraints, credit for manufacturing processing)

PP requirements were captured into the Level 2 Project System Requirement Document [first JPL Project to capture all PP requirements into Dynamic Object Oriented Requirements (DOORS) V&V tool].

All Level 2 and 3 requirements are under Project Change Control Board management.

* Detailed on following slides
Implementation of requirements

Maximum Accounted Bioburden Requirement:

→ 500,000 spores allocated to a budget

<table>
<thead>
<tr>
<th></th>
<th>spores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lander</td>
<td></td>
</tr>
<tr>
<td>PHX Landed Hardware (minus parachute)</td>
<td>32,000</td>
</tr>
<tr>
<td>Parachute</td>
<td>32,000</td>
</tr>
<tr>
<td>New External Lander Hardware and LM Reserves</td>
<td>35,000</td>
</tr>
<tr>
<td>Payload</td>
<td></td>
</tr>
<tr>
<td>SEIS</td>
<td>20,000</td>
</tr>
<tr>
<td>HP3</td>
<td>25,000</td>
</tr>
<tr>
<td>IDS</td>
<td>25,000</td>
</tr>
<tr>
<td>APSS</td>
<td>25,000</td>
</tr>
<tr>
<td>Impacting Hardware (PHX actuals)</td>
<td>100,000</td>
</tr>
<tr>
<td>Launch Recontamination (MSL heritage value from Atlas V)</td>
<td>22,000</td>
</tr>
<tr>
<td>Project Held Reserves</td>
<td>160,000 (32%)</td>
</tr>
</tbody>
</table>
Implementation of requirements

Bioburden management via PPEL (Planetary Protection Equipment List)

- Analogous to the MEL (Mass Equipment List)
Implementation of requirements

Special Analyses – Landing Site Analysis

- Landing Site Characterization – Demonstrate Landing Site is NOT a Special Region (Aw>0.5 AND T>-18°C)
- Modeling shows the bounding sub-surface temperatures over the full Mars year on specific sols of the InSight Mission. HP3 penetration phase expected ~sol 67-100. Thermal model verification performed.
- The short-lived temperature elevation of the subsurface above ambient due to HP3 hammering and thermal conductivity measurement activities is on the order of 10–50°C. Mean subsurface temperatures at this site are -55°C, producing thermal elevations to ~0°C.
- The regolith in the Elysium region is dry and ice-free, preventing HP3 heating from generating water activities in pore spaces from exceeding the threshold for microbial activity. The maximum possible water activity (Aw = rh/100) of 0.09.

Fulfils CatIVa Requirements – NOT a CatIVc Mission
Implementation of requirements

Special Analyses – Thin Film Analysis
• Background - A) hydrous mineral composition in martian soil capable of dehydration in the -55°C –0° range; conservative as it accounts for MgSO₄ minerals not likely at equatorial sites and B) factors in the maximum quantities of water lost from dehydration of those minerals.
• A pulse of a small quantity of water due to the mole would generate 8 to 10 monolayer equivalents in the immediate mole vicinity. This would return to its equilibrium value of 2 monolayers within hours.
• Liberated water would flow in under capillary action, spreading out in all directions. But, the maximum film thickness is too small to entrain a 50 nm particle and is both a short-lived and small-distance phenomenon.

Fulfils CatIVa Requirements – NOT a CatIVc Mission
Implementation of requirements

Partner-Contributed Payload Management

• Specific InSight Project PP Payload Implementation Plans.

• Instrument Providers then generated own Institutional (i.e. CNES and DLR) Planetary Protection Plans.

• Flow down of PP requirements to L4 payloads.

• Frequent telecons and email exchanges (effective & efficient communication).
 – Implementation approach questions
 – Assay updates

• PP participation / topic area of discussion for HP3 and SEIS weekly telecons.

• PP assay of interfaces; hardware certification process; status bio-assays on site at CNES and DLR with InSight planetary protection engineer.
Implementation of requirements

Special Analyses – Still have to comply with Impact Avoidance Requirements

• L2-PSRD-113: The InSight project injection aimpoint for launch shall be biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0×10^{-4} for 50 years after launch.

• Directed to consider Centaur anomalies in the assessment.
 – Anomalies include: Failure to separate, failure to perform CCAM, failure to blowdown.

• Approved PPO Plan Forward:
 1. Design the biased aimpoints and CCAM attitude to ensure a minimum first-pass probability of impact less than $0.5 x 10^{-4}$ for all anomalous scenarios.
 2. Design the blowdown attitude to ensure that the Mars encounter is sufficiently far away that the ΔV from the gravity assist is insufficient to place the Centaur on a 50-year resonant trajectory in the nominal scenario.
 3. Perform 5,000-case, 50-year Monte Carlo propagations of the three anomalous scenarios to determine the Beta distribution shape parameters for the 50-year probabilities of impact.
 4. Generate one million samples of each of the six Beta distributions representing the probability of an anomaly and the resulting 50-year probability of impact.
 5. Combine the six million-sample sets and analytical probabilities to determine the distribution of the estimate of the total probability of impact.

• Approved methodology being written up and submitted to a peer reviewed journal.
Things to remember

- Establish and maintain an end-to-end bioburden accounting approach.
- Pay attention to the details of provenance (manufacturing credit), inside/outside cleanliness, interfaces/environments, test activities, hardware processing, recontamination.
- Plan ahead for PP facilities needs and incorporation of PP into the ATLO flow.
- Time/resources need to be built in for high stringency cleanroom operation.
- Successful implementation needs good communication between PP implementors, hardware engineers, launch vehicles operations, project management, contributing hardware partners – so build in PP up front!